Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译
Students' ability to ask curious questions is a crucial skill that improves their learning processes. To train this skill, previous research has used a conversational agent that propose specific cues to prompt children's curiosity during learning. Despite showing pedagogical efficiency, this method is still limited since it relies on generating the said prompts by hand for each educational resource, which can be a very long and costly process. In this context, we leverage the advances in the natural language processing field and explore using a large language model (GPT-3) to automate the generation of this agent's curiosity-prompting cues to help children ask more and deeper questions. We then used this study to investigate a different curiosity-prompting behavior for the agent. The study was conducted with 75 students aged between 9 and 10. They either interacted with a hand-crafted conversational agent that proposes "closed" manually-extracted cues leading to predefined questions, a GPT-3-driven one that proposes the same type of cues, or a GPT-3-driven one that proposes "open" cues that can lead to several possible questions. Results showed a similar question-asking performance between children who had the two "closed" agents, but a significantly better one for participants with the "open" agent. Our first results suggest the validity of using GPT-3 to facilitate the implementation of curiosity-stimulating learning technologies. In a second step, we also show that GPT-3 can be efficient in proposing the relevant open cues that leave children with more autonomy to express their curiosity.
translated by 谷歌翻译
近年来,大型语言模型(LLMS)在自然语言产生中表现出了令人印象深刻的实力。提高发电多样性的一种常见做法是从模型中采样多个输出。但是,缺乏一种简单且可靠的方式来从这些随机样品中选择最佳输出。作为一个案例研究,在问题产生的背景下,我们提出了两种基于迅速的方法,以从一组LLM生成的候选人中选择高质量问题。我们的方法在1)限制下起作用,一个黑框(不可修改)问题生成模型和2)缺乏访问人类宣传的参考文献 - 这两者都是现实世界中LLMS的现实局限性。通过自动和人类评估,我们从经验上证明,我们的方法可以有效地选择比贪婪的生成更高质量的问题。
translated by 谷歌翻译
纯变压器模型在自然语言处理和计算机视觉方面取得了令人印象深刻的成功。但是,变压器的一个限制是它们需要大型培训数据。在3D点云的领域中,大数据集的可用性是一个挑战,它加剧了3D任务的训练变压器问题。在这项工作中,我们凭经验研究和研究利用大量图像的知识以了解点云的理解的效果。我们制定了一条称为\ textIt {pix4point}的管道,该管道允许在图像域中利用预验证的变压器来改善下游点云任务。这是通过用于3D域专门的令牌和解码器层的帮助,通过模态无形的纯变压器主链实现。使用图像预言的变压器,我们分别在Scanobjectnn,ShapenetPart和S3DIS基准上观察到3D点云分类,部分分割和语义分割的任务的Pix4Point的显着性能提高。我们的代码和模型可在:\ url {https://github.com/guochengqian/pix4point}中获得。
translated by 谷歌翻译
训练键形生成(KPG)模型需要大量注释的数据,这些数据可能非常昂贵,并且通常仅限于特定域。在这项研究中,我们首先证明了不同领域之间的巨大分布变化极大地阻碍了KPG模型的可传递性。然后,我们提出了一条三阶段的管道,该管道逐渐以数据效率的方式指导KPG模型从一般句法特征到与域相关的语义的学习重点。借助域将军短语预训练,我们使用通用短语注释进行预训练序列到序列模型,这些模型在网络上广泛使用,这使模型能够在广泛的域中生成短语。然后将所得模型应用于传输标签阶段,以产生域特异性伪键形,这有助于将模型适应新域。最后,我们使用有限的数据将模型微调,以完全适应目标域。我们的实验结果表明,所提出的过程可以在新领域中产生高质量的钥匙串,并在适应有限的域注释数据后进行一致的改进。
translated by 谷歌翻译
为了解决艰巨的任务,人类提出问题以从外部来源获取知识。相反,经典的加强学习者缺乏这种能力,并且常常诉诸探索性行为。这会加剧,因为很少的当今环境支持查询知识。为了研究如何通过语言教授代理来查询外部知识,我们首先介绍了两个新环境:基于网格世界的Q-babyai和基于文本的Q-Textworld。除了物理互动外,代理还可以查询专门针对这些环境的外部知识源来收集信息。其次,我们提出了“寻求知识”(AFK)代理,该代理学会生成语言命令以查询有助于解决任务的有意义的知识。 AFK利用非参数记忆,指针机制和情节探索奖金来解决(1)无关的信息,(2)一个较大的查询语言空间,(3)延迟奖励有意义的查询。广泛的实验表明,AFK代理在具有挑战性的Q-Babyai和Q-Textworld环境方面优于最近的基线。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译